Enhanced performance of Si-based Li-ion batteries through elastic cushioning with hollow graphene shells

نویسندگان

چکیده

Silicon (Si) is a promising anode material for next-generation Li-ion batteries. The nanometer-sized Si could alleviate the pulverization caused by large volume changes during deep cycling. However, compression between agglomerated particles causes cracking and electrode failure. Considering this, we engineered mechanical cushioning space via elastic hollow graphene shells (GSs) to flexibly buffer maintain stability of structure. stress generated from expansion lithiation was mechanically buffered gently released GS. In this Si/GS composite electrode, GS also reduced local agglomeration effectively improved overall conductivity. these advantages, designed showed an enhanced cycling performance with more than 1200 mA h g−1 at 0.8 A excellent rate capability 1025 4 after 200 cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries

Improving the energy capacity of spinel Li₄Ti₅O12 (LTO) is very important to utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li⁺ insertion and extr...

متن کامل

FeOx and Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries.

A novel design based on both FeOx and Si nano-dots bonded with graphene (FeOx·Si@GNS) as dual lithium-storage centers is reported. They show high performance as anode materials for Li-ion batteries with a remarkable reversible capacity of 1160 mA h g(-1) at 0.2 A g(-1), fast charging/discharging rate, and long cycling life (e.g., a capacity retention of 81.7% at 2.0 A g(-1) after 600 cycles). T...

متن کامل

Hollow Nanostructured Anode Materials for Li-Ion Batteries

Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li(+) transport, and more freedom f...

متن کامل

Do we need covalent bonding of Si nanoparticles on graphene oxide for Li-ion batteries?

In this manuscript, we report our investigation of anode materials for Li-ion batteries based on silicon-graphene oxide composites. Previous reports in the literature on silicon-graphene oxide (GO) composites as anodes have shown a large discrepancy between the electrochemical properties, mainly capacity and coulombic efficiency. In our research, the surface chemistry of Si nanoparticles has be...

متن کامل

Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries

A composite anode consisting of hollow SnO2 microspheres covered by glass-like B2O3 layers was prepared via a combined hydrothermal-impregnation method, which results in much improved electrochemical performance in lithium ion batteries, relative to pristine SnO2 anodes. The cycling and rate capabilities of the SnO2eB2O3 composite anodes were investigated as a function of B2O3 content. The bala...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China. Materials

سال: 2022

ISSN: ['2095-8226', '2199-4501']

DOI: https://doi.org/10.1007/s40843-021-2031-8